

Functionalization of 1,2-polybutadiene by ruthenium complex catalysed coupling with vinylsilanes

Bogdan Marciniec*, Mariusz Lewandowski and Cezary Pietraszuk Faculty of Chemistry, A. Mickiewicz University, 60-780 Poznań, Poland

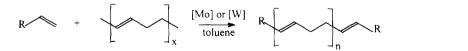
and Zenon Foltynowicz

Faculty of Commodity Science, Poznań University of Economics, 60-967 Poznań, Poland (Received 29 July 1996; revised 4 January 1997)

Vinyl groups, i.e. 1,2-units of polybutadiene in the presence of various ruthenium complexes at elevated temperatures undergo an effective reaction of dehydrogenative coupling with vinyltrisubstituted silanes to yield silyl substituted units. This is a new type of functionalization of unsaturated polymers. The reaction products are identified by ¹H and ¹³C n.m.r. and *FT*i.r. spectroscopies as well as g.p.c. methods. © 1997 Elsevier Science Ltd.

(Keywords: 1,2-polybutadiene; coupling; vinylsilane)

INTRODUCTION


Degradation of polymers with CH=CH bonds in the chain to low-molecular-weight products via olefin metathesis has been predominantly applied for the study of crosslinked structure^{1,2}. Experimental procedure involves investigation of the degradation products by g.c.-m.s. method³. This method was applied to identify network structures in 1,4-polybutadiene after the reaction with dicumyl peroxide in solution⁴. Copolymers of 1,3-butadiene with styrene⁵, propene⁵, divinylbenzene/ ethylvinylbenzene⁷, acrylonitrile⁸, vinyltrimethylsilane² and divinyldimethylsilane¹ have also been investigated. Cross-metathesis of unsaturated polymers with alkenes (mostly ethylene, octene) leading to oligomers, occurs in the presence of classical Mo and W catalysts¹⁻⁸. Silyl olefins, mainly allylsilanes, were used by Wagener in ADMET depolymerization of 1,4-polybutadiene to yield— in the presence of well-defined Schrock catalyst— perfectly difunctional (f = 2.0) telechelic polybutadiene oligomers according to Scheme 1^{9,10}:

in ADMET (de)polymerization in the presence of Mo and W catalyst^{12,13}, on the contrary, they can be used for the reduction of the molar mass of polymers¹⁴.

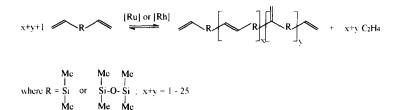
On the other hand, divinylsubstituted silanes¹⁵ and siloxanes¹⁶ appeared very reactive in the new type of polycondensation reaction catalyzed by ruthenium and rhodium complexes, giving unsaturated polymers according to *Scheme 2*.

Recently, mechanistic evidence has been found (using monovinylsilanes) in support of the fact that the reaction occurs not via metathetical conversion (cleavage of the C=C bond), but via dehydrogenative silylation of olefins by vinylsilanes (i.e. cleavage of vinyl C-H in olefins and Si- C_{vinyl} bonds¹⁷). The same process proceeds in the cross-metathesis of vinylsilanes with olefins in the presence of many ruthenium complexes¹⁸.

Therefore, the aim of this work is to utilize vinylsilanes not for depolymerization of 1,4- and 1,2-polybutadiene polymer to yield low-molecular oligomers, but for modification of polybutadiene to synthesize silylsubstituted polymers¹⁹.

Scheme 1

where $R = CH_2Si(CH_3)_3$ or $CH_2Si(CH_3)_2Cl$; n = 1 - 4


Crosslinking of the unsaturated polymers via metathetical conversion of hexenyl silicone polymers proceeding in the presence of Mo and W catalysts has been reported recently¹¹. Vinylsubstituted silanes are not active

EXPERIMENTAL

Materials

1,2-Polybutadiene ($M_n = 1000$) and 1,4-polybutadiene ($M_n = 400\,000$) were purchased from Polysciences, Inc. and used without additional purification. Vinyltriethoxysilane

^{*}To whom correspondence should be addressed

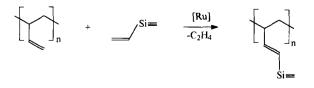
Scheme 2

and vinyltrimethylsilane were purchased from Fluka A.G. and were distilled prior to use. $Ru_3(CO)_{12}$, was purchased from Strem Chemicals and $[RuCl_2(CO)_3]_2$ was purchased from Aldrich Chem Co.; $RuCl_2(PPh_3)_3$, $RuHCl(CO)(PPh_3)_3$, $RuCl(SiMe_3)$ (CO)(PPh_3)_2 and $[RuCl_2(p-cymene)]_2$ were prepared by standard procedures.

Reactions

Reactions were carried out in a glass reactor equipped with condenser and heater or in sealed glass ampoules. In a typical reaction 1.00 g (0.001 mol) 1,2polybutadiene, 3.0 cm^3 toluene, 3.90 cm^3 (0.0185 mol) vinyltriethoxysilane (or 2.68 cm^3 (0.0185 mol) of vinyltrimethylsilane) and 1.85×10^{-4} mol of a catalyst were placed in the reaction system and heated for 24 h at 80°C. Polymeric products were precipitated from the solution with methanol, filtered, washed with methanol and dried under vacuum.

Equipment and analytical measurements


¹H and ¹³C n.m.r. spectra were recorded on a Varian XL300 spectrometer. Gel permeation chromatography (g.p.c.) data were collected using a Gilson HPLC system with $2 \times 250 \times 10$ mm, Jordi-Gel DVB Column; 500, 100 A using the polystyrene standards. I.r. spectra (film or KBr palette) were recorded using a FT-Bruker JFS-113v instrument.

RESULTS AND DISCUSSION

In our study two types of polybutadienes were used: 1,4-(*cis,trans*)-polybutadiene containing 9% of vinyl groups and 1,2-polybutadiene containing 85% of vinyl groups. The essential reaction of 1,2-polybutadiene with vinyltriethoxysilane and vinyltrimethylsilane proceeds according to *Scheme 3*.

As follows from the previously reported reactions of vinylsubstituted silanes with olefins the process is catalysed by many ruthenium complexes²⁰. Exemplary catalytic data are compiled in *Table 1*. Conversion of vinyl groups in the polymer was followed by g.p.c. method (by comparing molecular weight of the initial and silylated polymers) and/or was calculated on the basis of ¹H n.m.r. spectra.

Figure 1 displays ¹H n.m.r. spectra of the initial (top) and silylated (bottom) 1,2-polybutadiene.

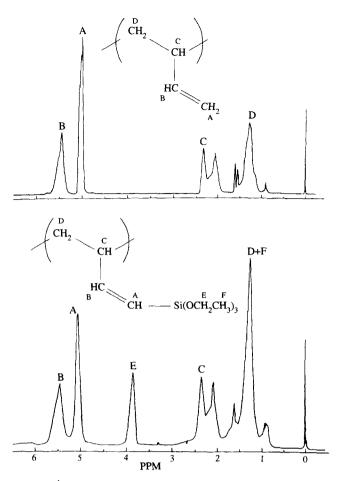
Scheme 3

Table 1 The effect of ruthenium catalyst on the conversion of vinyl groups and molecular weight (M_n) of the modified 1,2-polybutadiene

Catalyst	Conversion of vinyl groups (%)	M _n
$[RuCl_2(p-cymene)]_2$	6.4	1080
$[RuCl_2(CO)_3]_2$	0.0	1000
$Ru_3(CO)_{12}$	0.0	1000
$Ru(SiMe_3)Cl(CO)(PPh_3)_2$	28.7	1360
RuHCl(CO)(PPh ₃) ₃	13.2	1160
$\operatorname{RuCl}_2(\operatorname{PPh}_3)_3$	60.3	1720

Reaction conditions: temperature: 80° C; time: 48 h; molar ratio catalyst/silane: 0.01; glass ampoules; $M_{\rm p}$ of the initial polymer = 1000

 13 C n.m.r. and especially ¹H n.m.r. spectra are convincing evidence for real silylation of the polymer. As shown in ¹H n.m.r. (*Figure 1*) the modified polymer has a new proton resonance at the region 3.8 ppm and 1.1–1.6 ppm attributed to ethoxy substituents on silicon of the silyl group introduced to the chain. Moreover, the ¹H n.m.r. spectrum allows changes in the molecular weight of the silylated butadiene to be evaluated.


In the i.r. spectra (Figure 2 top) of the initial 1,2polybutadiene, a medium band at $1640 \,\mathrm{cm}^{-1}$ due to stretching vibration of C=C of vinyl groups and a medium band at 3075 assigned to stretching vibrations of =C-H bond as well as a strong band at 909 and 968 cm⁻¹ characteristic of deformation vibrations of =C-H bonds, were observed. After functionalizing of the polymer by its treatment with vinyltriethoxysilane, all these bands disappeared or markedly lowered (Figure 2 bottom). Moreoever, the spectra reveal a presence of a new broad band at 1080 cm⁻¹ attributable to Si–O–C vibration in the CH=CHSi $(OC_2H_5)_3$ groups which also proves functionalization of 1,2-polybutadiene. Simultaneously, a lowering of the bands at 723 cm⁻¹, which are due to *cis* –CH=CH– deformation vibrations (present in 1,2-butadiene in minor amounts) and appearance of a new broad band at $790 \, \text{cm}^{-1}$ were observed. The latter band presumably characterizes deformation vibration of $-CH = CH[Si(OEt)_3]$ unit. Activation of cis -HC=CH- to give $-CH=C[Si(OEt)_3]$ cannot be excluded.

If the reaction of 1,2-polybutadiene with vinyltriethoxysilane is carried out at temperatures higher than $80-100^{\circ}$ C, then, the dehydrogenative silylation of polymer is accompanied by crosslinking of the polymer.

The g.p.c. of the initial 1,2-polybutadiene (A) and treated with vinyltriethoxysilane at $80^{\circ}C$ (B) and $120^{\circ}C$ (C) is presented in *Figure 3*.

The molecular weight of the polymer (C) is 3200, while that of the polymer (B) is equal to 1700. Longer treatment of the polymer system at 120° C reveals an increase in its density and viscosity.

Silylation of 1,2-polybutadiene by vinyltrimethylsilane proceeds only at the temperature higher than 120°C and,

Figure 1 ¹H n.m.r. spectra of the initial (top) and silylated (bottom) 1,2-polybutadiene

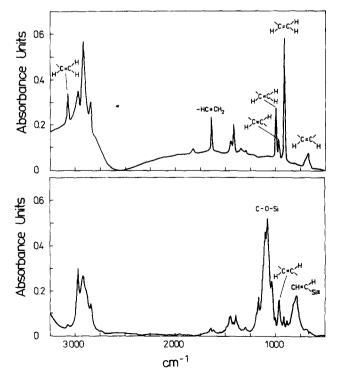


Figure 2 FTi.r. spectra of the initial (top) and silylated (bottom) 1,2-polybutadiene

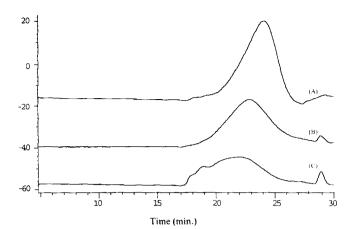


Figure 3 G.p.c. spectra of the initial 1,2-polybutadiene (A) and heated for 24 h with vinyltriethoxysilane at 80° C (B) and 120° C (C)

therefore, its products are always accompanied by the crosslinking phenomenon.

Similar series of the silvlation of (cis, trans)-1,4polybutadiene ($M_n = 400\,000$) by vinyltriethoxysilane was undertaken. The initial polybutadiene contained 9% of vinyl groups. Since in the i.r. spectra no band assigned for vinyl groups is observed after silylation, apparently, they all underwent reaction with vinylsilane in a similar way as in the case of 1,2-polybutadiene. Despite a lack of changes in the absorption band assigned to trans -HC=CH- vibrations in the 1,4-polybutadiene, the bands attributable to cis -HC=CH- deformation vibrations, and appearance of a new broad band at $788 \,\mathrm{cm}^{-1}$, characterizing deformation vibration of , characterizing deformation vibration of $-CH=C[Si(OEt)_3]$ and/or $-CH=CH[Si(OEt)_3]$ were observed. This can preliminarily be accounted for by activation of (cis -HC=CH) units in the dehydrogenative silvlation of 1,4-polybutadiene by vinylsilanes under the conditions studied, but experiments are to be continued.

It can be concluded that facile functionalizing of vinyl groups in 1,2-polybutadiene by its coupling with vinylsilanes is a new type of modification of unsaturated polymers¹⁹.

ACKNOWLEDGEMENT

This work was supported by funds from the State Committee of Scientific Research Project no. 7S 203 045 07.

REFERENCES

- 1. Hummel, K., Hubmann, E., Doesinger, M. and Pongratz, T., *Eur. Polym. J.*, 1991, **27**, 303.
- 2. Hubmann, E., Hummel, K., Doesinger, M., Pongratz, T. and Saaf, R., *Makromol. Chem.*, 1990, **191**, 1799.
- 3. Hummel, K., J. Mol. Catal., 1985, 28, 381.
- 4. Hummel, K., Chemelli, R., Grieber, H., Kumer, V.N.G. and Stelzer, F., Makromol. Chem., Rapid Commun., 1983, 4, 429.
- 5. Thorn-Csanyi, E., Abendroth, H. and Perner, H., Makromol. Chem., 1990, 181, 2081.
- Hummel, K., Lechner, H., Zekoll, H. and Chemelli, R., Makromol. Chem., 1987, 188, 1075.
- Hubmann, E., Loy, W.A., Th.Pngratz and Hummel, K., Makromol. Chem., 1987, 188, 2481.
- 8. Stelzer, F., Hobisch, G., Th.Pongratz and Hummel, K., J. Mol. Cata., 1988, 46, 433.
- 9. Marmo, J. C. and Wagener, K. B., *Macromolecules*, 1993, 26, 2137.

- 10. Marmo, J. C. and Wagener, K. B., Macromolecules, 1995, 28, 2602.
- 11. Stein, J., Lewis, L. N., Lettko, K. X. and Sumpter, C. A., J. Inorg. Organometal. Polym., 1994, 4, 367.
- 12. Smith, D. W. and Wagener, K. B., *Macromolecules*, 1993, 26, 1633.
- Finkelshtein, E. S. and Marciniec, B., in *Progress in Organo-silicon Chemistry*, ed. B. Marciniec and J. Chojnowski. Gordon and Breach, 1995, p. 445.
- 14. Streck, R., J. Mol. Catal., 1982, 15, 3.
- Marciniec, B. and Lewandowski, M. J. Polym. Sci., Part A, Pol. Chem., 1996, 34, 1443.
- Marcinice B. and Lewandowski, M., J. Inorg. Organometal. Polym., 1995, 5, 153.
- 17. Marcinice B. and Pietraszuk, C., J. Chem. Soc., Chem. Commun., 1995, 2003.
- 18. Marciniec, B., Pietraszuk, C. and Foltynowicz, Z., J. Mol. Catal., 1992, 76, 307.
- 19. McGrath, M. P., Sall, E. D. and Tremont, S. J., *Chem. Rev.*, 1995, **95**, 381.
- 20. Marciniec, B. and Gulinski, J., J. Mol. Catal., 1984, 266, C19.